
MATLAB® Coder™
Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ Getting Started Guide
© COPYRIGHT 2011–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only New for R2011a
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)
March 2018 Online only Revised for Version 4.0 (Release 2018a)
September 2018 Online only Revised for Version 4.1 (Release 2018b)
March 2019 Online only Revised for Version 4.2 (Release 2019a)
September 2019 Online only Revised for Version 4.3 (Release 2019b)
March 2020 Online only Revised for Version 5.0 (Release 2020a)
September 2020 Online only Revised for Version 5.1 (Release 2020b)
March 2021 Online only Revised for Version 5.2 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Product Overview
1

MATLAB Coder Product Description . 1-2

About MATLAB Coder . 1-3
When to Use MATLAB Coder . 1-3
What You Can Do with the Project Interface . 1-3
When to Use the Command Line (codegen function) 1-3

Code Generation for Embedded Software Applications 1-4

Code Generation for Fixed-Point Algorithms . 1-5

Installing Prerequisite Products . 1-6

Related Products . 1-7

Setting Up the C or C++ Compiler . 1-8

Expected Background . 1-9

Code Generation Workflow . 1-10
See Also . 1-10

Input Type Specification for Code Generation . 1-11

Differences in Appearance of Generated Code and MATLAB Code 1-14
Mapping MATLAB Functions to C/C++ Functions 1-14
Representation of Function Outputs . 1-14
Constant Values Removed in Generated Code . 1-15
Accessing Matrix Elements . 1-16
Math Operations and Other Function Calls . 1-16
Variable-Size Arrays . 1-16
Local Variables in Generated Code . 1-17
Cell Arrays in Generated Code . 1-17
Initialize and Terminate Functions . 1-17

Tutorials
2

Generate C Code by Using the MATLAB Coder App 2-2
Tutorial Files . 2-2

v

Contents

Generate C Code for the MATLAB Function . 2-4
Generate C Code for Variable-Size Inputs . 2-14
Next Steps . 2-15

Generate C Code at the Command Line . 2-17
Tutorial Files . 2-17
Generate C Code for the MATLAB Function . 2-19
Generate C Code for Variable-Size Inputs . 2-23
Next Steps . 2-24

Accelerate MATLAB Algorithm by Generating MEX Function 2-26
Tutorial Files . 2-26
Generate MEX Function for the MATLAB Function 2-28
Generate MEX Function for Variable-Size Inputs 2-31
Next Steps . 2-33

Hello World . 2-34

Generate Code for an Averaging Filter . 2-35

Best Practices for Working with MATLAB Coder
3

Recommended Compilation Options for codegen . 3-2
-c Generate Code Only . 3-2
-report Generate Code Generation Report . 3-2

Testing MEX Functions in MATLAB . 3-3

Comparing C Code and MATLAB Code Using Tiling in the MATLAB Editor
. 3-4

Using Build Scripts . 3-5

Check Code Using the MATLAB Code Analyzer . 3-6

Separating Your Test Bench from Your Function Code 3-7

Preserving Your Code . 3-8

File Naming Conventions . 3-9

vi Contents

Product Overview

• “MATLAB Coder Product Description” on page 1-2
• “About MATLAB Coder” on page 1-3
• “Code Generation for Embedded Software Applications” on page 1-4
• “Code Generation for Fixed-Point Algorithms” on page 1-5
• “Installing Prerequisite Products” on page 1-6
• “Related Products” on page 1-7
• “Setting Up the C or C++ Compiler” on page 1-8
• “Expected Background” on page 1-9
• “Code Generation Workflow” on page 1-10
• “Input Type Specification for Code Generation” on page 1-11
• “Differences in Appearance of Generated Code and MATLAB Code” on page 1-14

1

MATLAB Coder Product Description
Generate C and C++ code from MATLAB code

MATLAB Coder generates C and C++ code from MATLAB code for a variety of hardware platforms,
from desktop systems to embedded hardware. It supports most of the MATLAB language and a wide
range of toolboxes. You can integrate the generated code into your projects as source code, static
libraries, or dynamic libraries. The generated code is readable and portable. You can combine it with
key parts of your existing C and C++ code and libraries. You can also package the generated code as
a MEX-function for use in MATLAB.

When used with Embedded Coder®, MATLAB Coder provides code customizations, target-specific
optimizations, code traceability, and software-in-the-loop (SIL) and processor-in-the-loop (PIL)
verification.

To deploy MATLAB programs as standalone applications, use MATLAB Compiler™. To generate
software components for integration with other programming languages, use MATLAB Compiler
SDK™.

1 Product Overview

1-2

About MATLAB Coder

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.
• Generate MEX functions from MATLAB code to:

• Accelerate your MATLAB algorithms.
• Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

What You Can Do with the Project Interface
• Specify the MATLAB files from which you want to generate code
• Specify the data types for the inputs to these MATLAB files
• Select an output type:

• MEX function
• C/C++ Static Library
• C/C++ Dynamic Library
• C/C++ Executable

• Configure build settings to customize your environment for code generation
• Open the code generation report to view build status, generated code, and compile-time

information for the variables and expressions in your MATLAB code

See Also

• “Set Up a MATLAB Coder Project”
• “Generate C Code by Using the MATLAB Coder App” on page 2-2

When to Use the Command Line (codegen function)
Use the command line if you use build scripts to specify input parameter types and code generation
options.

See Also

• The codegen function reference page
• “Generate C Code at the Command Line” on page 2-17
• “Accelerate MATLAB Algorithm by Generating MEX Function” on page 2-26

 About MATLAB Coder

1-3

Code Generation for Embedded Software Applications
The Embedded Coder product extends the MATLAB Coder product with features that you can use for
embedded software development. With the Embedded Coder product, you can generate code that has
the clarity and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and executes efficiently for embedded systems.
• Customize the appearance of the generated code.
• Optimize generated code for a specific target environment.
• Integrate existing applications, functions, and data.
• Enable tracing, reporting, and testing options that facilitate code verification activities.

1 Product Overview

1-4

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Designer product, you can generate:

• MEX functions to accelerate fixed-point algorithms.
• Fixed-point code that provides a bit-wise match to MEX function results.

 Code Generation for Fixed-Point Algorithms

1-5

Installing Prerequisite Products
To generate C and C++ code using MATLAB Coder, you must install the following products:

• MATLAB

Note If MATLAB is installed on a path that contains non 7-bit ASCII characters, such as Japanese
characters, MATLAB Coder might not work because it cannot locate code generation library
functions.

• MATLAB Coder
• C or C++ compiler

MATLAB Coder automatically locates and uses a supported installed compiler. For the current list
of supported compilers, see Supported and Compatible Compilers on the MathWorks® website.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

For instructions on installing MathWorks products, see the MATLAB installation documentation for
your platform. If you have installed MATLAB and want to check which other MathWorks products are
installed, enter ver in the MATLAB Command Window.

1 Product Overview

1-6

https://www.mathworks.com/support/compilers.html

Related Products
• Embedded Coder
• Simulink® Coder

 Related Products

1-7

Setting Up the C or C++ Compiler
MATLAB Coder automatically locates and uses a supported installed compiler. For the current list of
supported compilers, see Supported and Compatible Compilers on the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default Compiler”. If you
generate C++ code, see “Choose a C++ Compiler”.

1 Product Overview

1-8

https://www.mathworks.com/support/compilers.html

Expected Background
You should be familiar with :

• MATLAB software
• MEX functions
• C/C++ programming concepts

To generate C code on embedded targets, you should also be familiar with how to re-compile the
generated code in the target environment.

To integrate the generated code into external applications, you should be familiar with the C/C++
compilation and linking process.

 Expected Background

1-9

Code Generation Workflow

See Also
• “Set Up a MATLAB Coder Project”
• “Workflow for Preparing MATLAB Code for Code Generation”
• “Workflow for Testing MEX Functions in MATLAB”
• “Code Generation Workflow”
• “Workflow for Accelerating MATLAB Algorithms”
• “Optimization Strategies”
• “Accelerate MATLAB Algorithms”

1 Product Overview

1-10

Input Type Specification for Code Generation
C/C++ and MATLAB handle variables differently. Some of these differences that affect the code
generation workflow are:

• C/C++ source code includes type declarations for all variables. The C/C++ compiler uses these
declarations to determine the types of all variables at compile time. MATLAB code does not
include explicit type declarations. The MATLAB execution engine determines the types of
variables at run time.

• In C/C++, the memory for arrays can be either statically declared at compile time (fixed size
arrays), or dynamically allocated at run time (variable-size arrays). All MATLAB arrays use
dynamically allocated memory and are of variable size.

To allow the generation of C/C++ code with specific types, you must specify the properties (class,
size, and complexity) of all input variables to the MATLAB entry-point functions during C/C++ or
MEX code generation. An entry-point function is a top-level MATLAB function from which you
generate code. The code generator uses these input properties to determine the properties of all
variables in the generated code. Different input type specifications can cause the same MATLAB code
to produce different versions of the generated code.

If you generate code by using the codegen command, you use the -args option to specify the input
types. If you generate code by using the MATLAB Coder app, you specify the input types in the
Define Input Types page.

To see how input type specification affects the generated code, consider a simple MATLAB function
myMultiply that multiplies two quantities a and b and returns the value of the product.

function y = myMultiply(a,b)
y = a*b;
end

Generate static C library code for three different type specifications for the input arguments a and b.
In each case, inspect the generated code.

• Specify a and b as real double scalars. To generate code for these inputs, run these commands:

a = 1;
codegen -config:lib myMultiply -args {a,a}

The generated C source file myMultiply.c contains the C function:

double myMultiply(double a, double b)
{
 return a * b;
}

• Specify a and b as real double 5-by-5 matrices. To generate code for these inputs, run these
commands:

a = zeros(5,5);
codegen -config:lib myMultiply -args {a,a}

The generated C source file myMultiply.c contains the C function:

void myMultiply(const double a[25], const double b[25], double y[25])
{

 Input Type Specification for Code Generation

1-11

 int i;
 int i1;
 double d;
 int i2;
 for (i = 0; i < 5; i++) {
 for (i1 = 0; i1 < 5; i1++) {
 d = 0.0;
 for (i2 = 0; i2 < 5; i2++) {
 d += a[i + 5 * i2] * b[i2 + 5 * i1];
 }

 y[i + 5 * i1] = d;
 }
 }
}

const double a[25] and const double b[25] correspond to the inputs a and b in the
MATLAB code. The size of the one-dimensional arrays a and b in the C code is 25, which is equal
to the total number of elements in example input arrays that you used when you called the
codegen function.

The C function has one more argument: the one-dimensional array y of size 25. It uses this array
to return the output of the function.

You can also generate code that has the same array dimensions as the MATLAB code. See
“Generate Code That Uses N-Dimensional Indexing”.

• Finally, you generate code for myMultiply that can accept input arrays of many different sizes.
To specify variable-size inputs, you can use the coder.typeof function. coder.typeof(A,B,1)
specifies a variable-size input with the same class and complexity as A and upper bounds given by
the corresponding element of the size vector B.

Specify a and b as real double arrays that are of variable-size, with a maximum size of 10 on
either dimension. To generate code, run these commands:

a = coder.typeof(1,[10 10],1);
codegen -config:lib myMultiply -args {a,a}

The signature of the generated C function is:

void myMultiply(const double a_data[], const int a_size[2], const double b_data[],
 const int b_size[2], double y_data[], int y_size[2])

The arguments a_data, b_data, and y_data correspond to the input arguments x and b and the
output argument y in the original MATLAB function. The C function now accepts three additional
arguments, a_size, b_size, and y_size, that specify the sizes of a_data, b_data, and y_data
at run time.

See Also
codegen | coder.typeof

More About
• “Specify Properties of Entry-Point Function Inputs”
• “Generate C Code by Using the MATLAB Coder App” on page 2-2

1 Product Overview

1-12

• “Generate C Code at the Command Line” on page 2-17
• “Generate Code That Uses N-Dimensional Indexing”

 Input Type Specification for Code Generation

1-13

Differences in Appearance of Generated Code and MATLAB
Code

MATLAB Coder translates and optimizes dynamically typed MATLAB code into statically typed C/C+
+. Statically typed languages require variable types to be explicitly declared and these types are
determined at compile time. Certain changes and optimizations performed by the code generator
enable the use of MATLAB data types and features in the generated code. For more information on
data types and features supported for code generation, see “Data Definition” and “MATLAB Language
Features Supported for C/C++ Code Generation”.

These changes and optimizations cause the generated code to appear differently than the MATLAB
code. The generated code might not map in a one-to-one manner with your MATLAB code due to any
of the following:

• “Mapping MATLAB Functions to C/C++ Functions” on page 1-14
• “Representation of Function Outputs” on page 1-14
• “Constant Values Removed in Generated Code” on page 1-15
• “Accessing Matrix Elements” on page 1-16
• “Math Operations and Other Function Calls” on page 1-16
• “Variable-Size Arrays” on page 1-16
• “Local Variables in Generated Code” on page 1-17
• “Cell Arrays in Generated Code” on page 1-17
• “Initialize and Terminate Functions” on page 1-17

Note Depending on your source code, these cases might occur slightly differently than how they are
shown here.

Mapping MATLAB Functions to C/C++ Functions
MATLAB Coder generates standalone C/C++ code and MEX code from MATLAB code. A single
function in your MATLAB code might be translated into multiple functions in the generated code. Two
or more functions in your MATLAB code might also become one function body in the generated code.
This process is called function inlining. By default, the code generator uses internal heuristics to
determine whether to inline your functions or not. For more information, see coder.inline and
“Control Inlining to Fine-Tune Performance and Readability of Generated Code”.

Representation of Function Outputs
Outputs of a MATLAB function might become return values in C or might become pass-by-reference
inputs. . One scalar output in your MATLAB code is treated as a return value in the generated code.

• The function addOne has an input variable x and output variable y. For this example, x is of type
double.

function y = addOne(x)
y = x + 1;
end

1 Product Overview

1-14

The code generated for the snippet is shown here:

double addOne(double x)
{
 return x + 1.0;
}

The input to the function addOne, x, is treated as a pass-by-value variable in the generated code.
The output of the MATLAB function is returned by value in the generated code.

• For arrays, outputs might be passed-by-reference. The code snippet shown here uses a double
input x and an array output y.

function y = addMat(x)
z = [1:100];
y = z + x;
end

The output variable y is translated into a pass-by-reference array variable in the generated code
shown here:

void addMat(double x, double y[100])
{
 int i;
 for (i = 0; i < 100; i++) {
 y[i] = ((double)i + 1.0) + x;
 }
}

• For entry-point functions that have multiple output variables, outputs might be passed-by-
reference in the generated code. This code snippet has two double scalar outputs, y and z, with a
double scalar input x.

function [z,y] = splitOne(x)
y = x + 1;
z = x + 2;
end

The output variables y and z are translated into a pass-by-reference variables in the generated
code:

void splitOne(double x, double *z, double *y)
{
 *y = x + 1.0;
 *z = x + 2.0;
}

For more information on argument passing behavior of entry-point functions in the generated code,
see “Deploy Generated Code”.

Constant Values Removed in Generated Code
Constant values in your code might not be preserved in generated code. These values might get
removed to optimize the generated code. Constant folding removes the computations that might have
been present in your MATLAB code and replaces the computations with the result instead. For more
information, see “Constant Folding”.

Consider this code snippet:

 Differences in Appearance of Generated Code and MATLAB Code

1-15

function y = removeConst
x = ones(10);
y = x + 1;
end

The code generator removes the constant matrix x to save memory and assigns the constant value as
the result. The generated code looks like this code:

void removeConst(double y[100])
{
 int i;
 for (i = 0; i < 100; i++) {
 y[i] = 2.0;
 }
}

Unused inputs or constant inputs to nonentry-point functions in your MATLAB code are removed from
the function bodies in the generated code.

Function specializations by the code generator can change the function to a version where the input
type, size, complexity, or value might be customized for a particular invocation of the function. This is
done to produce efficient C code at the expense of code duplication. For more information, see
“Specialized Functions or Classes”.

Accessing Matrix Elements
In the preceding instance, accessing a matrix requires extra lines of code in C/C++. A 10-by-10
matrix is represented as an array of 100 double elements in the generated code. A for loop is used
to access all the array elements in this case. C/C++ do not support many matrix operations, so the
code generator converts the matrices and the operations on matrices to arrays and methods like for
loops to access those arrays.

Math Operations and Other Function Calls
The generated code might use standard C libraries to carry out the math operations or other
functions in your MATLAB code. For a list of supported language functions, see “MATLAB Language
Features Supported for C/C++ Code Generation”.

Variable-Size Arrays
For code generation, an array can be fixed-size or variable-size. Variable-size arrays might appear in
different formats in the generated code. Code can be generated for a fixed-size array if the code
generator can determine the size of the array. Code generation is also valid for a fixed-size array with
an upper bound. Dynamically allocated arrays are also generated in certain cases. See “Code
Generation for Variable-Size Arrays”.

Code generation for fixed-size and variable-size arrays might yield the following variable declarations
in the generated code:

double x[10]; // Fixed-size array
double y_data[20];
int y_size[2]; // y_data and y_size denote an upper-bounded array
emxArrayReal_T *z; // Dynamically allocated array

1 Product Overview

1-16

Local Variables in Generated Code
If your MATLAB code contains local variables that occupy a lot of memory, then in the generated code
they might be declared as local variables, static local variables, or as variables in a struct that is
passed into your entry-point function in your generated code. You can control this transformation by
controlling the memory that is allocated for the generated code. See “Control Stack Space Usage”.

Cell Arrays in Generated Code
To implement cell arrays in generated code, the code generator might translate them as a struct,
static array, or dynamic array. For more information, see “Code Generation for Cell Arrays”.

Initialize and Terminate Functions
The code generator might produce two housekeeping functions, initialize and terminate, if they are
needed. You can find these functions in the Generated Code tab in the code generation report. The
initialize function initializes the state on which the generated C/C++ entry-point functions operate.
The terminate function frees allocated memory and performs other cleanup operations. For more
information, see “Use Generated Initialize and Terminate Functions”

See Also
coder.inline

More About
• “Generate C Code by Using the MATLAB Coder App” on page 2-2
• “Generate C Code at the Command Line” on page 2-17
• “Language, Function, and Object Support”
• “Optimization Strategies”

 Differences in Appearance of Generated Code and MATLAB Code

1-17

Tutorials

• “Generate C Code by Using the MATLAB Coder App” on page 2-2
• “Generate C Code at the Command Line” on page 2-17
• “Accelerate MATLAB Algorithm by Generating MEX Function” on page 2-26
• “Hello World” on page 2-34
• “Generate Code for an Averaging Filter” on page 2-35

2

Generate C Code by Using the MATLAB Coder App
In this tutorial, you use the MATLAB Coder app to generate a static C library for a MATLAB function.
You first generate C code that can accept only inputs that have fixed preassigned size. You then
generate C code that can accept inputs of many different sizes.

You can also generate code at the MATLAB command line by using the codegen command. For a
tutorial on this workflow, see “Generate C Code at the Command Line” on page 2-17.

The MATLAB Coder app is not supported in MATLAB Online™. To generate C/C++ code in MATLAB
Online, use the codegen command.

Tutorial Files
Copy the tutorial files from the folder matlabroot\help\toolbox\coder\examples\euclidean
to a local working folder. Here, matlabroot is the MATLAB installation folder, for example,
C:\Program Files\MATLAB\R2019a. To copy these files to your current folder, run this MATLAB
command:

copyfile(fullfile(matlabroot,'help','toolbox','coder','examples','euclidean'))

The local working folder cannot be a private folder or an @ folder. This tutorial uses the
euclidean_data.mat, euclidean.m, and test.m files.

• The MATLAB data file euclidean_data.mat contains two pieces of data: a single point in three-
dimensional Euclidean space and a set of several other points in three-dimensional Euclidean
space. More specifically:

• x is a 3-by-1 column vector that represents a point in three-dimensional Euclidean space.
• cb is a 3-by-216 array. Each column in cb represents a point in three-dimensional Euclidean

space.
• The MATLAB file euclidean.m contains the function euclidean that implements the core

algorithm in this example. The function takes x and cb as inputs. It calculates the Euclidean
distance between x and each point in cb and returns these quantities:

• The column vector y_min, which is equal to the column in cb that represents the point that is
closest to x.

• The column vector y_max, which is equal to the column in cb that represents the point that is
farthest from x.

• The 2-dimensional vector idx that contains the column indices of the vectors y_min and
y_max in cb.

• The 2-dimensional vector distance that contains the calculated smallest and largest distances
to x.

function [y_min,y_max,idx,distance] = euclidean(x,cb)
% Initialize minimum distance as distance to first element of cb
% Initialize maximum distance as distance to first element of cb
idx(1)=1;
idx(2)=1;

distance(1)=norm(x-cb(:,1));
distance(2)=norm(x-cb(:,1));

2 Tutorials

2-2

% Find the vector in cb with minimum distance to x
% Find the vector in cb with maximum distance to x
for index=2:size(cb,2)
 d=norm(x-cb(:,index));
 if d < distance(1)
 distance(1)=d;
 idx(1)=index;
 end
 if d > distance(2)
 distance(2)=d;
 idx(2)=index;
 end
end

% Output the minimum and maximum distance vectors
y_min=cb(:,idx(1));
y_max=cb(:,idx(2));

end
• The MATLAB script test.m loads the data file euclidean_data.mat into the workspace. It then

calls the function euclidean to calculate y_min, y_max, idx, and distance. The script then
displays the calculated quantities at the command line.

Loading euclidean_data.mat is the preprocessing step that is executed before calling the core
algorithm. Displaying the results is the post-processing step.

% Load test data
load euclidean_data.mat

% Determine closest and farthest points and corresponding distances
[y_min,y_max,idx,distance] = euclidean(x,cb);

% Display output for the closest point
disp('Coordinates of the closest point are: ');
disp(num2str(y_min'));
disp(['Index of the closest point is ', num2str(idx(1))]);
disp(['Distance to the closest point is ', num2str(distance(1))]);

disp(newline);

% Display output for the farthest point
disp('Coordinates of the farthest point are: ');
disp(num2str(y_max'));
disp(['Index of the farthest point is ', num2str(idx(2))]);
disp(['Distance to the farthest point is ', num2str(distance(2))]);

Tip You can generate code from MATLAB functions by using MATLAB Coder. Code generation from
MATLAB scripts is not supported.

Use test scripts to separate the pre- and post-processing steps from the function implementing the
core algorithm. This practice enables you to easily reuse your algorithm. You generate code for the
MATLAB function that implements the core algorithm. You do not generate code for the test script.

 Generate C Code by Using the MATLAB Coder App

2-3

Generate C Code for the MATLAB Function
Run the Original MATLAB Code

Run the test script test.m in MATLAB. The output displays y, idx, and distance.

Coordinates of the closest point are:
0.8 0.8 0.4
Index of the closest point is 171
Distance to the closest point is 0.080374

Coordinates of the farthest point are:
0 0 1
Index of the farthest point is 6
Distance to the farthest point is 1.2923

Make the MATLAB Code Suitable for Code Generation

The Code Analyzer in the MATLAB Editor continuously checks your code as you enter it. It reports
issues and recommends modifications to maximize performance and maintainability.

1 Open euclidean.m in the MATLAB Editor. The Code Analyzer message indicator in the top right
corner of the MATLAB Editor is green. The analyzer did not detect errors, warnings, or
opportunities for improvement in the code.

2 After the function declaration, add the %#codegen directive:

function [y,idx,distance] = euclidean(x,cb) %#codegen

The %#codegen directive prompts the Code Analyzer to identify warnings and errors specific to
code generation.

The Code Analyzer message indicator becomes red, indicating that it has detected code
generation issues.

3 To view the warning messages, move your cursor to the underlined code fragments. The
warnings indicate that code generation requires the variables idx and distance to be fully
defined before subscripting them. These warnings appear because the code generator must
determine the sizes of these variables at their first appearance in the code. To fix this issue, use
the ones function to simultaneously allocate and initialize these arrays.

% Initialize minimum distance as distance to first element of cb
% Initialize maximum distance as distance to first element of cb

2 Tutorials

2-4

idx = ones(1,2);

distance = ones(1,2)*norm(x-cb(:,1));

The Code Analyzer message indicator becomes green again, indicating that it does not detect any
more code generation issues.

For more information about using the Code Analyzer, see “Check Code for Errors and Warnings”.
4 Save the file.

You are now ready to compile your code by using the MATLAB Coder app. Here, compilation
refers to the generation of C/C++ code from your MATLAB code.

Note Compilation of MATLAB code refers to the generation of C/C++ code from the MATLAB code.
In other contexts, the term compilation could refer to the action of a C/C++ compiler.

Open the MATLAB Coder App and Select Source Files

1 On the MATLAB toolstrip Apps tab, under Code Generation, click the MATLAB Coder app icon.
The app opens the Select Source Files page.

2 In the Select Source Files page, enter or select the name of the entry-point function
euclidean. An entry-point function is a top-level MATLAB function from which you generate
code. The app creates a project with the default name euclidean.prj in the current folder.

 Generate C Code by Using the MATLAB Coder App

2-5

3 Click Next to go to the Define Input Types step. The app runs the Code Analyzer (that you
already ran in the previous step) and the Code Generation Readiness Tool on the entry-point
function. The Code Generation Readiness Tool screens the MATLAB code for features and
functions that are not supported for code generation. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In this
example, because the app does not detect issues, it opens the Define Input Types page. For
more information, see “Code Generation Readiness Tool”.

Note The Code Analyzer and the Code Generation Readiness Tool might not detect all code
generation issues. After eliminating the errors or warnings that these two tools detect, generate
code with MATLAB Coder to determine if your MATLAB code has other compliance issues.

Certain MATLAB built-in functions and toolbox functions, classes, and System objects that are
supported for C/C++ code generation have specific code generation limitations. These limitations and
related usage notes are listed in the Extended Capabilities sections of their corresponding
reference pages. For more information, see “Functions and Objects Supported for C/C++ Code
Generation”.

2 Tutorials

2-6

Define Input Types

Because C uses static typing, the code generator must determine the class, size, and complexity of all
variables in the MATLAB files at code generation time, also known as compile time. Therefore, you
must specify the properties of all entry-point function inputs. To specify input properties, you can:

• Instruct the app to automatically determine input properties by providing a script that calls the
entry-point functions with sample inputs.

• Specify properties directly.

In this example, to define the properties of the inputs x and cb, specify the test file test.m that the
code generator can use to define types automatically:

1 Enter or select the test file test.m.
2 Click Autodefine Input Types.

The test file, test.m, calls the entry-point function, euclidean, with the expected input types.
The app determines that the input x is double(3x1) and the input cb is double(3x216).

3 Click Next to go to the Check for Run-Time Issues step.

 Generate C Code by Using the MATLAB Coder App

2-7

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point functions, runs the
MEX function, and reports issues. A MEX function is generated code that can be called from inside
MATLAB. It is a best practice to perform this step because you can detect and fix run-time errors that
are harder to diagnose in the generated C code. By default, the MEX function includes memory
integrity checks. These checks perform array bounds and dimension checking. The checks detect
violations of memory integrity in code generated for MATLAB functions. For more information, see
“Control Run-Time Checks”.

To convert MATLAB code to efficient C/C++ source code, the code generator introduces
optimizations that, in certain situations, cause the generated code to behave differently than the
original source code. See “Differences Between Generated Code and MATLAB Code”.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues arrow .
2 In the Check for Run-Time Issues dialog box, specify a test file or enter code that calls the

entry-point function with example inputs. For this example, use the test file test that you used
to define the input types.

3 Click Check for Issues.

The app generates a MEX function. It runs the test script test replacing calls to euclidean
with calls to the generated MEX. If the app detects issues during the MEX function generation or
execution, it provides warning and error messages. Click these messages to navigate to the
problematic code and fix the issue. In this example, the app does not detect issues.

2 Tutorials

2-8

4 By default, the app collects line execution counts. These counts help you to see how well the test
file test.m exercised the euclidean function. To view line execution counts, click View
MATLAB line execution counts. The app editor displays a color-coded bar to the left of the
code. To extend the color highlighting over the code and to see line execution counts, place your
cursor over the bar.

 Generate C Code by Using the MATLAB Coder App

2-9

A particular shade of green indicates that the line execution count for this code falls in a certain
range. In this case, the for-loop executes 215 times. For information about how to interpret line
execution counts and turn off collection of the counts, see “Collect and View Line Execution
Counts for Your MATLAB Code”.

5 Click Next to go to the Generate Code step.

Note Before generating standalone C/C++ code from your MATLAB code, generate a MEX function.
Run the generated MEX function and make sure it has the same run-time behavior as your MATLAB
function. If the generated MEX function produces answers that are different from MATLAB, or
produces an error, you must fix these issues before proceeding to standalone code generation.
Otherwise, the standalone code that you generate might be unreliable and have undefined behavior.

Generate C Code

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Static Library (.lib) and Language to C.

Use the default values for the other project build configuration settings.

2 Tutorials

2-10

Instead of generating a C static library, you can choose to generate a MEX function or other C/C
++ build types. Different project settings are available for the MEX and C/C++ build types.
When you switch between MEX and C/C++ code generation, verify the settings that you choose.

3 Click Generate.

MATLAB Coder generates a standalone C static library euclidean in the work\codegen\lib
\euclidean. work is the folder that contains your tutorial files. The MATLAB Coder app
indicates that code generation succeeded. It displays the source MATLAB files and generated
output files on the left side of the page. On the Variables tab, it displays information about the
MATLAB source variables. On the Target Build Log tab, it displays the build log, including C/C+
+ compiler warnings and errors. By default, in the code window, the app displays the C source
code file, euclidean.c. To view a different file, in the Source Code or Output Files pane, click
the file name.

 Generate C Code by Using the MATLAB Coder App

2-11

4 Click View Report to view the report in the Report Viewer. If the code generator detects errors
or warnings during code generation, the report describes the issues and provides links to the
problematic MATLAB code. For more information, see “Code Generation Reports”.

5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a project summary
and links to generated output.

2 Tutorials

2-12

Compare the Generated C Code to Original MATLAB Code

To compare your generated C code to the original MATLAB code, open the C file, euclidean.c, and
the euclidean.m file in the MATLAB Editor.

Important information about the generated C code:

• The function signature is:

void euclidean(const double x[3], const double cb[648], double y_min[3], double
 y_max[3], double idx[2], double distance[2])

const double x[3] corresponds to the input x in your MATLAB code. The size of x is 3, which
corresponds to the total size (3 x 1) of the example input that you used when you generated code
from your MATLAB code.

const double cb[648] corresponds to the input cb in your MATLAB code. The size of cb is
648, which corresponds to the total size (3 x 216) of the example input that you used when you
generated code from your MATLAB code. In this case, the generated code uses a one-dimensional
array to represent a two-dimensional array in the MATLAB code.

 Generate C Code by Using the MATLAB Coder App

2-13

The generated code has four additional input arguments: the arrays y_min, y_max, idx, and
distance. These arrays are used to return the output values. They correspond to the output
arguments y_min, y_max, idx, and distance in the original MATLAB code.

• The code generator preserves your function name and comments. When possible, the code
generator preserves your variable names.

Note If a variable in your MATLAB code is set to a constant value, it does not appear as a variable
in the generated C code. Instead, the generated C code contains the actual value of the variable.

With Embedded Coder, you can interactively trace between MATLAB code and generated C/C++
code. See “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded
Coder).

Generate C Code for Variable-Size Inputs
The C function that you generated for euclidean.m can accept only inputs that have the same size
as the sample inputs that you specified during code generation. However, the input arrays to the
corresponding MATLAB function can be of any size. In this part of the tutorial, you generate C code
from euclidean.m that accepts variable-size inputs.

Suppose that you want the dimensions of x and cb in the generated C code to have these properties:

• The first dimension of both x and cb can vary in size up to 3.
• The second dimension of x is fixed and has the value 1.
• The second dimension of cb can vary in size up to 216.

To specify these input properties:

1 In the Define Input Types step, enter the test file test.m and click Autodefine Input Types as
before. The test file calls the entry-point function, euclidean.m, with the expected input types.
The app determines that the input x is double(3x1) and the input cb is double(3x216).
These types specify fixed-size inputs.

2 Click the input type specifications and edit them. You can specify variable size, up to a specified
limit, by using the : prefix. For example, :3 implies that the corresponding dimension can vary in
size up to 3. Change the types to double(:3 x 1) for x and double(:3 x :216) for cb.

2 Tutorials

2-14

You can now generate code by following the same steps as before. The function signature for the
generated C code in euclidean.c now reads:

void euclidean(const double x_data[], const int x_size[1], const double cb_data[],
 const int cb_size[2], double y_min_data[], int y_min_size[1],
 double y_max_data[], int y_max_size[1], double idx[2], double
 distance[2])

The arguments x_data, cb_data, y_min_data, and y_max_data correspond to the input
arguments x and cb and the output arguments y_min and y_max in the original MATLAB function.
The C function now accepts four additional input arguments x_size, cb_size, y_min_size, and
y_max_size that specify the sizes of x_data, cb_data, y_min_data, and y_max_data at run time.

Next Steps
Goal More Information
Learn about code generation support for
MATLAB built-in functions and toolbox functions,
classes, and System objects

“Functions and Objects Supported for C/C++
Code Generation”

 Generate C Code by Using the MATLAB Coder App

2-15

Goal More Information
Generate C++ code “C++ Code Generation”
Generate and modify an example C main function
and use it to build a C executable program

“Use an Example C Main in an Application”

Package generated files into a compressed file “Package Code for Other Development
Environments”

Optimize the execution speed or memory usage of
generated code

“Optimization Strategies”

Integrate your custom C/C++ code into the
generated code

“Call C/C++ Code from MATLAB Code”

Learn about the code generation report “Code Generation Reports”

“Interactively Trace Between MATLAB Code and
Generated C/C++ Code” (Embedded Coder)

See Also

2 Tutorials

2-16

Generate C Code at the Command Line
In this tutorial, you use the MATLAB Coder codegen command to generate a static C library for a
MATLAB function. You first generate C code that can accept only inputs that have fixed preassigned
size. You then generate C code that can accept inputs of many different sizes.

You can also generate code by using the MATLAB Coder app. For a tutorial on this workflow, see
“Generate C Code by Using the MATLAB Coder App” on page 2-2.

Tutorial Files
Copy the tutorial files from the folder matlabroot\help\toolbox\coder\examples\euclidean
to a local working folder. Here, matlabroot is the MATLAB installation folder, for example,
C:\Program Files\MATLAB\R2019a. To copy these files to your current folder, run this MATLAB
command:

copyfile(fullfile(matlabroot,'help','toolbox','coder','examples','euclidean'))

The local working folder cannot be a private folder or an @ folder. This tutorial uses the
euclidean_data.mat, euclidean.m, test.m, build_lib_fixed.m, and
build_lib_variable.m files.

• The MATLAB data file euclidean_data.mat contains two pieces of data: a single point in three-
dimensional Euclidean space and a set of several other points in three-dimensional Euclidean
space. More specifically:

• x is a 3-by-1 column vector that represents a point in three-dimensional Euclidean space.
• cb is a 3-by-216 array. Each column in cb represents a point in three-dimensional Euclidean

space.
• The MATLAB file euclidean.m contains the function euclidean that implements the core

algorithm in this example. The function takes x and cb as inputs. It calculates the Euclidean
distance between x and each point in cb and returns these quantities:

• The column vector y_min, which is equal to the column in cb that represents the point that is
closest to x.

• The column vector y_max, which is equal to the column in cb that represents the point that is
farthest from x.

• The 2-dimensional vector idx that contains the column indices of the vectors y_min and
y_max in cb.

• The 2-dimensional vector distance that contains the calculated smallest and largest distances
to x.

function [y_min,y_max,idx,distance] = euclidean(x,cb)
% Initialize minimum distance as distance to first element of cb
% Initialize maximum distance as distance to first element of cb
idx(1)=1;
idx(2)=1;

distance(1)=norm(x-cb(:,1));
distance(2)=norm(x-cb(:,1));

% Find the vector in cb with minimum distance to x

 Generate C Code at the Command Line

2-17

% Find the vector in cb with maximum distance to x
for index=2:size(cb,2)
 d=norm(x-cb(:,index));
 if d < distance(1)
 distance(1)=d;
 idx(1)=index;
 end
 if d > distance(2)
 distance(2)=d;
 idx(2)=index;
 end
end

% Output the minimum and maximum distance vectors
y_min=cb(:,idx(1));
y_max=cb(:,idx(2));

end
• The MATLAB script test.m loads the data file euclidean_data.mat into the workspace. It then

calls the function euclidean to calculate y_min, y_max, idx, and distance. The script then
displays the calculated quantities at the command line.

Loading euclidean_data.mat is the preprocessing step that is executed before calling the core
algorithm. Displaying the results is the post-processing step.

% Load test data
load euclidean_data.mat

% Determine closest and farthest points and corresponding distances
[y_min,y_max,idx,distance] = euclidean(x,cb);

% Display output for the closest point
disp('Coordinates of the closest point are: ');
disp(num2str(y_min'));
disp(['Index of the closest point is ', num2str(idx(1))]);
disp(['Distance to the closest point is ', num2str(distance(1))]);

disp(newline);

% Display output for the farthest point
disp('Coordinates of the farthest point are: ');
disp(num2str(y_max'));
disp(['Index of the farthest point is ', num2str(idx(2))]);
disp(['Distance to the farthest point is ', num2str(distance(2))]);

• The build scripts build_lib_fixed.m and build_lib_variable.m contain commands for
generating static C libraries from your MATLAB code that accept fixed-size and variable-size
inputs, respectively. The contents of these scripts are shown later in the tutorial, when you
generate the C code.

Tip You can generate code from MATLAB functions by using MATLAB Coder. Code generation from
MATLAB scripts is not supported.

Use test scripts to separate the pre- and post-processing steps from the function implementing the
core algorithm. This practice enables you to easily reuse your algorithm. You generate code for the
MATLAB function that implements the core algorithm. You do not generate code for the test script.

2 Tutorials

2-18

Generate C Code for the MATLAB Function
Run the Original MATLAB Code

Run the test script test.m in MATLAB. The output displays y, idx, and distance.

Coordinates of the closest point are:
0.8 0.8 0.4
Index of the closest point is 171
Distance to the closest point is 0.080374

Coordinates of the farthest point are:
0 0 1
Index of the farthest point is 6
Distance to the farthest point is 1.2923

Make the MATLAB Code Suitable for Code Generation

To make your MATLAB code suitable for code generation, you use the Code Analyzer and the Code
Generation Readiness Tool. The Code Analyzer in the MATLAB Editor continuously checks your code
as you enter it. It reports issues and recommends modifications to maximize performance and
maintainability. The Code Generation Readiness Tool screens the MATLAB code for features and
functions that are not supported for code generation.

Certain MATLAB built-in functions and toolbox functions, classes, and System objects that are
supported for C/C++ code generation have specific code generation limitations. These limitations and
related usage notes are listed in the Extended Capabilities sections of their corresponding
reference pages. For more information, see “Functions and Objects Supported for C/C++ Code
Generation”.

1 Open euclidean.m in the MATLAB Editor. The Code Analyzer message indicator in the top right
corner of the MATLAB Editor is green. The analyzer did not detect errors, warnings, or
opportunities for improvement in the code.

2 After the function declaration, add the %#codegen directive:

function [y,idx,distance] = euclidean(x,cb) %#codegen

The %#codegen directive prompts the Code Analyzer to identify warnings and errors specific to
code generation.

The Code Analyzer message indicator becomes red, indicating that it has detected code
generation issues.

 Generate C Code at the Command Line

2-19

3 To view the warning messages, move your cursor to the underlined code fragments. The
warnings indicate that code generation requires the variables idx and distance to be fully
defined before subscripting them. These warnings appear because the code generator must
determine the sizes of these variables at their first appearance in the code. To fix this issue, use
the ones function to simultaneously allocate and initialize these arrays.

% Initialize minimum distance as distance to first element of cb
% Initialize maximum distance as distance to first element of cb
idx = ones(1,2);

distance = ones(1,2)*norm(x-cb(:,1));

The Code Analyzer message indicator becomes green again, indicating that it does not detect any
more code generation issues.

For more information about using the Code Analyzer, see “Check Code for Errors and Warnings”.
4 Save the file.
5 To run the Code Generation Readiness Tool, call the coder.screener function from the

MATLAB command line.

coder.screener('euclidean')

The tool does not detect any code generation issues for euclidean. For more information, see
“Code Generation Readiness Tool”.

The Code Generation Readiness Tool is not supported in MATLAB Online.

2 Tutorials

2-20

Note The Code Analyzer and the Code Generation Readiness Tool might not detect all code
generation issues. After eliminating the errors or warnings that these tools detect, generate code
by using MATLAB Coder to determine if your MATLAB code has other compliance issues.

You are now ready to compile your code by using the MATLAB Coder app. Here, compilation refers to
the generation of C/C++ code from your MATLAB code.

Note Compilation of MATLAB code refers to the generation of C/C++ code from the MATLAB code.
In other contexts, the term compilation could refer to the action of a C/C++ compiler.

Defining Input Types

Because C uses static typing, the code generator must determine the class, size, and complexity of all
variables in the MATLAB files at code generation time, also known as compile time. Therefore, when
you generate code for the files, you must specify the properties of all input arguments to the entry-
point functions. An entry-point function is a top-level MATLAB function from which you generate
code.

When you generate code by using the codegen command, use the -args option to specify sample
input parameters to the entry-point functions. The code generator uses this information to determine
the properties of the input arguments.

In the next step, you use the codegen command to generate a MEX file from your entry-point
function euclidean.

Check for Run-Time Issues

You generate a MEX function from your entry-point function. A MEX function is generated code that
can be called from inside MATLAB. You run the MEX function and check whether the generated MEX
function and the original MATLAB function have the same functionality.

It is a best practice to perform this step because you can detect and fix run-time errors that are
harder to diagnose in the generated C code. By default, the MEX function includes memory integrity
checks. These checks perform array bounds and dimension checking. The checks detect violations of
memory integrity in code generated for MATLAB functions. For more information, see “Control Run-
Time Checks”.

To convert MATLAB code to efficient C/C++ source code, the code generator introduces
optimizations that, in certain situations, cause the generated code to behave differently than the
original source code. See “Differences Between Generated Code and MATLAB Code”.

1 Generate a MEX file for euclidean.m by using the codegen command. To verify the MEX
function, run the test script test with calls to the MATLAB function euclidean replaced with
calls to the generated MEX function.

codegen euclidean.m -args {x,cb} -test test

• By default, codegen generates a MEX function named euclidean_mex in the current folder.
• You use the -args option to specify sample input parameters to the entry-point function

euclidean. The code generator uses this information to determine the properties of the
input arguments.

• You use the -test option to run the test file test.m. This option replaces the calls to
euclidean in the test file with calls to euclidean_mex.

 Generate C Code at the Command Line

2-21

The output is:

Running test file: 'test' with MEX function 'euclidean_mex'.
Coordinates of the closest point are:
0.8 0.8 0.4
Index of the closest point is 171
Distance to the closest point is 0.080374

Coordinates of the farthest point are:
0 0 1
Index of the farthest point is 6
Distance to the farthest point is 1.2923

This output matches the output that was generated by the original MATLAB function and verifies
the MEX function. Now you are ready to generate standalone C code for euclidean.

Note Before generating standalone C/C++ code from your MATLAB code, generate a MEX function.
Run the generated MEX function and make sure it has the same run-time behavior as your MATLAB
function. If the generated MEX function produces answers that are different from MATLAB, or
produces an error, you must fix these issues before proceeding to standalone code generation.
Otherwise, the standalone code that you generate might be unreliable and have undefined behavior.

Generate C Code

The build script build_lib_fixed.m contains the commands that you use to generate code for
euclidean.m.

% Load the test data
load euclidean_data.mat
% Generate code for euclidean.m with codegen. Use the test data as example input.
codegen -report -config:lib euclidean.m -args {x, cb}

Note that:

• codegen reads the file euclidean.m and translates the MATLAB code into C code.
• The -report option instructs codegen to generate a code generation report that you can use to

debug code generation issues and verify that your MATLAB code is suitable for code generation.
• The -config:lib option instructs codegen to generate a static C library instead of generating

the default MEX function.
• The -args option instructs codegen to generate code for euclidean.m using the class, size, and

complexity of the sample input parameters x and cb.

Instead of generating a C static library, you can choose to generate a MEX function or other C/C++
build types by using suitable options with the codegen command. For more information on the
various code generation options, see codegen.

1 Run the build script.

MATLAB processes the build file and outputs the message:

Code generation successful: View report.

2 Tutorials

2-22

The code generator produces a standalone C static library euclidean in work\codegen\lib
\euclidean. Here, work is the folder that contains your tutorial files.

2 To view the code generation report in the Report Viewer, click View report .

If the code generator detects errors or warnings during code generation, the report describes the
issues and provides links to the problematic MATLAB code. See “Code Generation Reports”.

Tip Use a build script to generate code at the command line. A build script automates a series of
MATLAB commands that you perform repeatedly at the command line, saving you time and
eliminating input errors.

Compare the Generated C Code to Original MATLAB Code

To compare your generated C code to the original MATLAB code, open the C file, euclidean.c, and
the euclidean.m file in the MATLAB Editor.

Important information about the generated C code:

• The function signature is:

void euclidean(const double x[3], const double cb[648], double y_min[3], double
 y_max[3], double idx[2], double distance[2])

const double x[3] corresponds to the input x in your MATLAB code. The size of x is 3, which
corresponds to the total size (3 x 1) of the example input you used when you generated code for
your MATLAB code.

const double cb[648] corresponds to the input cb in your MATLAB code. The size of cb is
648, which corresponds to the total size (3 x 216) of the example input you used when you
generated code for your MATLAB code. In this case, the generated code uses a one-dimensional
array to represent a two-dimensional array in the MATLAB code.

The generated code has four additional input arguments: the arrays y_min, y_max, idx, and
distance. These arrays are used to return the output values. They correspond to the output
arguments y_min, y_max, idx, and distance in the original MATLAB code.

• The code generator preserves your function name and comments. When possible, the code
generator preserves your variable names.

Note If a variable in your MATLAB code is set to a constant value, it does not appear as a variable
in the generated C code. Instead, the generated C code contains the actual value of the variable.

With Embedded Coder, you can interactively trace between MATLAB code and generated C/C++
code. See “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded
Coder).

Generate C Code for Variable-Size Inputs
The C function that you generated for euclidean.m can accept only inputs that have the same size
as the sample inputs that you specified during code generation. However, the input arrays to the
corresponding MATLAB function can be of any size. In this part of the tutorial, you generate C code
from euclidean.m that accepts variable-size inputs.

 Generate C Code at the Command Line

2-23

Suppose that you want the dimensions of x and cb in the generated C code to have these properties:

• The first dimension of both x and cb can vary in size up to 3.
• The second dimension of x is fixed and has the value 1.
• The second dimension of cb can vary in size up to 216.

To specify these input properties, use the coder.typeof function. coder.typeof(A,B,1) specifies
a variable-size input with the same class and complexity as A and upper bounds given by the
corresponding element of the size vector B. Use the build script build_lib_variable.m that uses
coder.typeof to specify the properties of variable-size inputs in the generated C library.

% Load the test data
load euclidean_data.mat

% Use coder.typeof to specify variable-size inputs
eg_x=coder.typeof(x,[3 1],1);
eg_cb=coder.typeof(cb,[3 216],1);

% Generate code for euclidean.m using coder.typeof to specify
% upper bounds for the example inputs
codegen -report -config:lib euclidean.m -args {eg_x,eg_cb}

You can now generate code by following the same steps as before. The function signature for the
generated C code in euclidean.c now reads:

void euclidean(const double x_data[], const int x_size[1], const double cb_data[],
 const int cb_size[2], double y_min_data[], int y_min_size[1],
 double y_max_data[], int y_max_size[1], double idx[2], double
 distance[2])

The arguments x_data, cb_data, y_min_data, and y_max_data correspond to the input
arguments x and cb and the output arguments y_min and y_max in the original MATLAB function.
The C function now accepts four additional input arguments x_size, cb_size, y_min_size and
y_max_size that specify the sizes of x_data, cb_data, y_min_data, and y_max_data at run time.

Next Steps
Goal More Information
Learn about code generation support for
MATLAB built-in functions and toolbox functions,
classes, and System objects

“Functions and Objects Supported for C/C++
Code Generation”

Generate C++ code “C++ Code Generation”
Create and edit input types interactively “Create and Edit Input Types by Using the Coder

Type Editor”
Generate and modify an example C main function
and use it to build a C executable program

“Use an Example C Main in an Application”

Package generated files into a compressed file “Package Code for Other Development
Environments”

Optimize the execution speed or memory usage of
generated code

“Optimization Strategies”

2 Tutorials

2-24

Goal More Information
Integrate your custom C/C++ code into the
generated code

“Call C/C++ Code from MATLAB Code”

Learn about the code generation report “Code Generation Reports”

“Interactively Trace Between MATLAB Code and
Generated C/C++ Code” (Embedded Coder)

See Also
codegen | coder.screener

 Generate C Code at the Command Line

2-25

Accelerate MATLAB Algorithm by Generating MEX Function
You can use MATLAB Coder to generate a MEX function from your MATLAB code. A MEX function is
a MATLAB executable. It is generated code that can be called from inside MATLAB. While working
inside the MATLAB environment, use MEX functions to accelerate the computationally intensive
portions of your MATLAB code. Generate a MEX function from your MATLAB code by using the
MATLAB Coder app or by using codegen at the MATLAB command line.

In this tutorial, you use the MATLAB Coder codegen command to generate a MEX function for a
MATLAB function. You first generate a MEX function that can accept only inputs that have fixed,
preassigned size. You then generate another MEX function that can accept inputs of many different
sizes.

Tutorial Files
Copy the tutorial files from the folder matlabroot\help\toolbox\coder\examples\euclidean
to a local working folder. Here, matlabroot is the MATLAB installation folder, for example,
C:\Program Files\MATLAB\R2019a. To copy these files to your current folder, run this MATLAB
command:

copyfile(fullfile(matlabroot,'help','toolbox','coder','examples','euclidean'))

The local working folder cannot be a private folder or an @ folder. This tutorial uses the
euclidean_data.mat, euclidean.m, test.m, test_2d.m, build_mex_fixed.m, and
build_mex_variable.m files.

• The MATLAB data file euclidean_data.mat contains two pieces of data: a single point in three-
dimensional Euclidean space and a set of several other points in three-dimensional Euclidean
space. More specifically:

• x is a 3-by-1 column vector that represents a point in three-dimensional Euclidean space.
• cb is a 3-by-216 array. Each column in cb represents a point in three-dimensional Euclidean

space.
• The MATLAB file euclidean.m contains the function euclidean that implements the core

algorithm in this example. The function takes x and cb as inputs. It calculates the Euclidean
distance between x and each point in cb and returns these quantities:

• The column vector y_min, which is equal to the column in cb that represents the point closest
to x.

• The column vector y_max, which is equal to the column in cb that represents the point farthest
from x.

• The 2-dimensional vector idx that contains the column indices of the vectors y_min and
y_max in cb.

• The 2-dimensional vector distance that contains the calculated smallest and largest distances
to x.

function [y_min,y_max,idx,distance] = euclidean(x,cb)
% Initialize minimum distance as distance to first element of cb
% Initialize maximum distance as distance to first element of cb
idx(1)=1;
idx(2)=1;

2 Tutorials

2-26

distance(1)=norm(x-cb(:,1));
distance(2)=norm(x-cb(:,1));

% Find the vector in cb with minimum distance to x
% Find the vector in cb with maximum distance to x
for index=2:size(cb,2)
 d=norm(x-cb(:,index));
 if d < distance(1)
 distance(1)=d;
 idx(1)=index;
 end
 if d > distance(2)
 distance(2)=d;
 idx(2)=index;
 end
end

% Output the minimum and maximum distance vectors
y_min=cb(:,idx(1));
y_max=cb(:,idx(2));

end

• The MATLAB script test.m loads the data file euclidean_data.mat into the workspace. It calls
the function euclidean to calculate y_min, y_max, idx, and distance. The script then displays
the calculated quantities at the command line.

Loading euclidean_data.mat is the preprocessing step that is executed before calling the core
algorithm. Displaying the results is the post-processing step.

% Load test data
load euclidean_data.mat

% Determine closest and farthest points and corresponding distances
[y_min,y_max,idx,distance] = euclidean(x,cb);

% Display output for the closest point
disp('Coordinates of the closest point are: ');
disp(num2str(y_min'));
disp(['Index of the closest point is ', num2str(idx(1))]);
disp(['Distance to the closest point is ', num2str(distance(1))]);

disp(newline);

% Display output for the farthest point
disp('Coordinates of the farthest point are: ');
disp(num2str(y_max'));
disp(['Index of the farthest point is ', num2str(idx(2))]);
disp(['Distance to the farthest point is ', num2str(distance(2))]);

• The MATLAB script test_2d.m is a modification of test.m for points in two-dimensional
Euclidean space. The contents of test_2d.m are shown later in the tutorial, when you use it to
test the MEX function for variable-size inputs.

• The build scripts build_mex_fixed.m and build_mex_variable.m contain commands for
generating static C libraries from your MATLAB code that accept fixed-size and variable-size
inputs, respectively. The contents of these scripts are shown later in the tutorial, when you
generate the C code.

 Accelerate MATLAB Algorithm by Generating MEX Function

2-27

Tip You can generate code from MATLAB functions by using MATLAB Coder. Code generation from
MATLAB scripts is not supported.

Use test scripts to separate the pre- and post-processing steps from the function that implements the
core algorithm. This practice enables you to easily reuse your algorithm. You generate code for the
MATLAB function implementing the core algorithm. You do not generate code for the test script.

Generate MEX Function for the MATLAB Function
Run the Original MATLAB Code

Run the test script test.m in MATLAB. The output displays y, idx, and distance.

Coordinates of the closest point are:
0.8 0.8 0.4
Index of the closest point is 171
Distance to the closest point is 0.080374

Coordinates of the farthest point are:
0 0 1
Index of the farthest point is 6
Distance to the farthest point is 1.2923

Make the MATLAB Code Suitable for Code Generation

To make your MATLAB code suitable for code generation, you use the Code Analyzer and the Code
Generation Readiness Tool. The Code Analyzer in the MATLAB Editor continuously checks your code
as you enter it. It reports issues and recommends modifications to maximize performance and
maintainability. The Code Generation Readiness Tool screens the MATLAB code for features and
functions that are not supported for code generation.

Certain MATLAB built-in functions and toolbox functions, classes, and System objects that are
supported for C/C++ code generation have specific code generation limitations. These limitations and
related usage notes are listed in the Extended Capabilities sections of their corresponding
reference pages. For more information, see “Functions and Objects Supported for C/C++ Code
Generation”.

1 Open euclidean.m in the MATLAB Editor. The Code Analyzer message indicator in the top right
corner of the MATLAB Editor is green. The analyzer did not detect errors, warnings, or
opportunities for improvement in the code.

2 After the function declaration, add the %#codegen directive:

function [y,idx,distance] = euclidean(x,cb) %#codegen

The %#codegen directive prompts the Code Analyzer to identify warnings and errors specific to
code generation.

The Code Analyzer message indicator becomes red, indicating that it has detected code
generation issues.

2 Tutorials

2-28

3 To view the warning messages, move your cursor to the underlined code fragments. The
warnings indicate that code generation requires the variables idx and distance to be fully
defined before subscripting them. This warning appears because the code generator must
determine the sizes of these variables at their first appearance in the code. To fix this issue, use
the ones function to simultaneously allocate and initialize these arrays.

% Initialize minimum distance as distance to first element of cb
% Initialize maximum distance as distance to first element of cb
idx = ones(1,2);

distance = ones(1,2)*norm(x-cb(:,1));

The Code Analyzer message indicator becomes green again, indicating that it does not detect any
more code generation issues.

For more information about using the Code Analyzer, see “Check Code for Errors and Warnings”.
4 Save the file.
5 To run the Code Generation Readiness Tool, call the coder.screener function from the

MATLAB command line:

coder.screener('euclidean')

The tool does not detect any code generation issues for euclidean. For more information, see
“Code Generation Readiness Tool”.

The Code Generation Readiness Tool is not supported in MATLAB Online.

 Accelerate MATLAB Algorithm by Generating MEX Function

2-29

Note The Code Analyzer and the Code Generation Readiness Tool might not detect all code
generation issues. After eliminating the errors or warnings that these tools detect, generate code
by using MATLAB Coder to determine if your MATLAB code has other compliance issues.

You are now ready to compile your code by using the MATLAB Coder app. Here, compilation refers to
the generation of C/C++ code from your MATLAB code.

Note Compilation of MATLAB code refers to the generation of C/C++ code from the MATLAB code.
In other contexts, the term compilation could refer to the action of a C/C++ compiler.

Defining Input Types

Because C uses static typing, the code generator must determine the class, size, and complexity of all
variables in the MATLAB files at code generation time, also known as compile time. Therefore, when
you generate code for the files, you must specify the properties of all input arguments to the entry-
point functions. An entry-point function is a top-level MATLAB function from which you generate
code.

When you generate code by using the codegen command, use the -args option to specify sample
input parameters to the entry-point functions. The code generator uses this information to determine
the properties of the input arguments.

In the next step, you use the codegen command to generate a MEX file from your entry-point
function euclidean.

Generate and Validate the MEX Function

The build script build_mex_fixed.m contains the commands that you use to generate and validate
a MEX function for euclidean.m. To validate the MEX function, you run the test script test with
calls to the MATLAB function euclidean replaced with calls to the generated MEX function.

% Load the test data
load euclidean_data.mat
% Generate code for euclidean.m with codegen. Use the test data as example input. Validate MEX by using test.m.
codegen -report euclidean.m -args {x, cb} -test test

Note that:

• By default, codegen generates a MEX function named euclidean_mex in the current folder.
• The -report option instructs codegen to generate a code generation report that you can use to

debug code generation issues and verify that your MATLAB code is suitable for code generation.
• The -args option specifies sample input parameters to the entry-point function euclidean. The

code generator uses this information to determine the class, size, and complexity of the input
arguments.

• You use the -test option to run the test file test.m. This option replaces the calls to euclidean
in the test file with calls to euclidean_mex.

For more information on the code generation options, see codegen.

1 Run the build script build_mex_fixed.m.

The code generator produces a MEX function euclidean_mex in the current working folder.

2 Tutorials

2-30

The output is:

Code generation successful: View report.
Running test file: 'test' with MEX function 'euclidean_mex'.
Coordinates of the closest point are:
0.8 0.8 0.4
Index of the closest point is 171
Distance to the closest point is 0.080374

Coordinates of the farthest point are:
0 0 1
Index of the farthest point is 6
Distance to the farthest point is 1.2923

This output matches the output that was generated by the original MATLAB function and verifies
the MEX function.

2 To view the code generation report in the Report Viewer, click View report .

If the code generator detects errors or warnings during code generation, the report describes the
issues and provides links to the problematic MATLAB code. See “Code Generation Reports”.

Tip Use a build script to generate code at the command line. A build script automates a series of
MATLAB commands that you perform repeatedly at the command line, saving you time and
eliminating input errors.

Generate MEX Function for Variable-Size Inputs
The MEX function that you generated for euclidean.m can accept only inputs that have the same
size as the sample inputs that you specified during code generation. However, the input arrays to the
corresponding MATLAB function can be of any size. In this part of the tutorial, you generate a MEX
function from euclidean.m that accepts variable-size inputs.

Suppose that you want the dimensions of x and cb in the generated MEX function to have these
properties:

• The first dimension of both x and cb can vary in size up to 3.
• The second dimension of x is fixed and has the value 1.
• The second dimension of cb can vary in size up to 216.

To specify these input properties, you use the coder.typeof function. coder.typeof(A,B,1)
specifies a variable-size input with the same class and complexity as A and upper bounds given by the
corresponding element of the size vector B. Use the build script build_mex_variable.m that uses
coder.typeof to specify the properties of variable-size inputs in the generated MEX function.

% Load the test data
load euclidean_data.mat

% Use coder.typeof to specify variable-size inputs
eg_x=coder.typeof(x,[3 1],1);
eg_cb=coder.typeof(cb,[3 216],1);

% Generate code for euclidean.m using coder.typeof to specify

 Accelerate MATLAB Algorithm by Generating MEX Function

2-31

% upper bounds for the example inputs
codegen -report euclidean.m -args {eg_x,eg_cb}

You can verify that the new MEX function euclidean_mex accepts inputs of dimensions different
from those of x and cb. The test script test_2d.m creates the input arrays x2d and cb2d that are
two-dimensional versions of x and cb, respectively. It then calls the MATLAB function euclidean by
using these input parameters.

% Load the test data
load euclidean_data.mat

% Create 2-D versions of x and cb
x2d=x(1:2,:);
cb2d=cb(1:2,1:6:216);

% Determine closest and farthest points and corresponding distances
[y_min,y_max,idx,distance] = euclidean(x2d,cb2d);

% Display output for the closest point
disp('Coordinates of the closest point are: ');
disp(num2str(y_min'));
disp(['Index of the closest point is ', num2str(idx(1))]);
disp(['Distance to the closest point is ', num2str(distance(1))]);

disp(newline);

% Display output for the farthest point
disp('Coordinates of the farthest point are: ');
disp(num2str(y_max'));
disp(['Index of the farthest point is ', num2str(idx(2))]);
disp(['Distance to the farthest point is ', num2str(distance(2))]);

Running test_2d.m produces the output:

Coordinates of the closest point are:
0.8 0.8
Index of the closest point is 29
Distance to the closest point is 0.078672

Coordinates of the farthest point are:
0 0
Index of the farthest point is 1
Distance to the farthest point is 1.1357

To run the test script test_2d.m with the calls to euclidean replaced with calls to
euclidean_mex, use coder.runTest.

coder.runTest('test_2d','euclidean')

The output matches the output generated by the original MATLAB function. This verifies the fact that
the new MEX function can accept inputs of dimensions different from those of x and cb.

2 Tutorials

2-32

Next Steps
Goal More Information
Learn about code generation support for
MATLAB built-in functions and toolbox functions,
classes, and System objects

“Functions and Objects Supported for C/C++
Code Generation”

Generate C++ MEX code “C++ Code Generation”
Create and edit input types interactively “Create and Edit Input Types by Using the Coder

Type Editor”
Optimize the execution speed or memory usage of
generated code

“Optimization Strategies”

Learn about the code generation report “Code Generation Reports”
See execution times and code coverage for
generated MEX functions in MATLAB Profiler

“Profile MEX Functions by Using MATLAB
Profiler”

See Also
codegen | coder.runTest | coder.screener

 Accelerate MATLAB Algorithm by Generating MEX Function

2-33

Hello World
This example shows how to generate a MEX function from a simple MATLAB® function using the
codegen command. You can use codegen to check that your MATLAB code is suitable for code
generation and, in many cases, to accelerate your MATLAB algorithm. You can run the MEX function
to check for run-time errors.

Prerequisites

There are no prerequisites for this example.

About the 'hello_world' Function

The hello_world.m function simply returns the string 'Hello World!'.

type hello_world

function y = hello_world
%#codegen
y = 'Hello World!';

The %#codegen directive indicates that the MATLAB code is intended for code generation.

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the name of the MATLAB
file to compile.

codegen hello_world

Code generation successful.

By default, codegen generates a MEX function named hello_world_mex in the current folder. This
allows you to test the MATLAB code and MEX function and compare the results.

Run the MEX Function

Run the MEX function to compare its behavior to that of the original MATLAB function and to check
for run-time errors.

hello_world_mex

ans =
'Hello World!'

2 Tutorials

2-34

Generate Code for an Averaging Filter
This example shows the recommended workflow for generating C code from a MATLAB® function
using the codegen command. These are the steps:

1. Add the %#codegen directive to the MATLAB function to indicate that it is intended for code
generation. This directive also enables the MATLAB code analyzer to identify warnings and errors
specific to MATLAB for code generation.

2. Generate a MEX function to check that the MATLAB code is suitable for code generation. If errors
occur, you should fix them before generating C code.

3. Test the MEX function in MATLAB to ensure that it is functionally equivalent to the original
MATLAB code and that no run-time errors occur.

4. Generate C code.

5. Inspect the C code.

Prerequisites

There are no prerequisites for this example.

About the averaging_filter Function

The averaging_filter.m function acts as an averaging filter on the input signal; it takes an input
vector of values and computes an average for each value in the vector. The output vector is the same
size and shape as the input vector.

type averaging_filter

% y = averaging_filter(x)
% Take an input vector signal 'x' and produce an output vector signal 'y' with
% same type and shape as 'x' but filtered.
function y = averaging_filter(x) %#codegen
% Use a persistent variable 'buffer' that represents a sliding window of
% 16 samples at a time.
persistent buffer;
if isempty(buffer)
 buffer = zeros(16,1);
end
y = zeros(size(x), class(x));
for i = 1:numel(x)
 % Scroll the buffer
 buffer(2:end) = buffer(1:end-1);
 % Add a new sample value to the buffer
 buffer(1) = x(i);
 % Compute the current average value of the window and
 % write result
 y(i) = sum(buffer)/numel(buffer);
end

The %#codegen compilation directive indicates that the MATLAB code is intended for code
generation.

 Generate Code for an Averaging Filter

2-35

Create Some Sample Data

Generate a noisy sine wave and plot the result.

v = 0:0.00614:2*pi;
x = sin(v) + 0.3*rand(1,numel(v));
plot(x, 'red');

Generate a MEX Function for Testing

Generate a MEX function using the codegen command. The codegen command checks that the
MATLAB function is suitable for code generation and generates a MEX function that you can test in
MATLAB prior to generating C code.

codegen averaging_filter -args {x}

Code generation successful.

Because C uses static typing, codegen must determine the properties of all variables in the MATLAB
files at compile time. Here, the -args command-line option supplies an example input so that
codegen can infer new types based on the input types. Using the sample signal created above as the
example input ensures that the MEX function can use the same input.

By default, codegen generates a MEX function named averaging_filter_mex in the current
folder. This allows you to test the MATLAB code and MEX function and compare the results.

2 Tutorials

2-36

Test the MEX Function in MATLAB

Run the MEX function in MATLAB

y = averaging_filter_mex(x);
% Plot the result when the MEX function is applied to the noisy sine wave.
% The 'hold on' command ensures that the plot uses the same figure window as
% the previous plot command.
hold on;
plot(y, 'blue');

Generate C Code

codegen -config coder.config('lib') averaging_filter -args {x}

Code generation successful.

Inspect the Generated Code

The codegen command with the -config coder.config('lib') option generates C code
packaged as a standalone C library. The generated C code is in the codegen/lib/
averaging_filter/ folder. The files are:

dir codegen/lib/averaging_filter/

. averaging_filter_rtw_comp.rsp

.. averaging_filter_rtw_ref.rsp

.gitignore averaging_filter_terminate.c

 Generate Code for an Averaging Filter

2-37

_clang-format averaging_filter_terminate.h
averaging_filter.c averaging_filter_terminate.obj
averaging_filter.h averaging_filter_types.h
averaging_filter.lib buildInfo.mat
averaging_filter.obj codeInfo.mat
averaging_filter_data.c codedescriptor.dmr
averaging_filter_data.h compileInfo.mat
averaging_filter_data.obj defines.txt
averaging_filter_initialize.c examples
averaging_filter_initialize.h interface
averaging_filter_initialize.obj rtw_proj.tmw
averaging_filter_rtw.bat rtwtypes.h
averaging_filter_rtw.mk setup_msvc.bat
averaging_filter_rtw.rsp

Inspect the C Code for the averaging_filter.c Function

type codegen/lib/averaging_filter/averaging_filter.c

/*
 * File: averaging_filter.c
 *
 * MATLAB Coder version : 5.2
 * C/C++ source code generated on : 23-Feb-2021 13:53:24
 */

/* Include Files */
#include "averaging_filter.h"
#include "averaging_filter_data.h"
#include "averaging_filter_initialize.h"
#include <string.h>

/* Variable Definitions */
static double buffer[16];

/* Function Definitions */
/*
 * Use a persistent variable 'buffer' that represents a sliding window of
 * 16 samples at a time.
 *
 * Arguments : const double x[1024]
 * double y[1024]
 * Return Type : void
 */
void averaging_filter(const double x[1024], double y[1024])
{
 double dv[15];
 double b_y;
 double d;
 int i;
 int k;
 if (!isInitialized_averaging_filter) {
 averaging_filter_initialize();
 }
 /* y = averaging_filter(x) */
 /* Take an input vector signal 'x' and produce an output vector signal 'y'
 * with */
 /* same type and shape as 'x' but filtered. */

2 Tutorials

2-38

 for (i = 0; i < 1024; i++) {
 /* Scroll the buffer */
 memcpy(&dv[0], &buffer[0], 15U * sizeof(double));
 /* Add a new sample value to the buffer */
 buffer[0] = x[i];
 /* Compute the current average value of the window and */
 /* write result */
 b_y = buffer[0];
 for (k = 0; k < 15; k++) {
 d = dv[k];
 buffer[k + 1] = d;
 b_y += d;
 }
 y[i] = b_y / 16.0;
 }
}

/*
 * Use a persistent variable 'buffer' that represents a sliding window of
 * 16 samples at a time.
 *
 * Arguments : void
 * Return Type : void
 */
void averaging_filter_init(void)
{
 memset(&buffer[0], 0, 16U * sizeof(double));
}

/*
 * File trailer for averaging_filter.c
 *
 * [EOF]
 */

 Generate Code for an Averaging Filter

2-39

Best Practices for Working with MATLAB
Coder

• “Recommended Compilation Options for codegen” on page 3-2
• “Testing MEX Functions in MATLAB” on page 3-3
• “Comparing C Code and MATLAB Code Using Tiling in the MATLAB Editor” on page 3-4
• “Using Build Scripts” on page 3-5
• “Check Code Using the MATLAB Code Analyzer” on page 3-6
• “Separating Your Test Bench from Your Function Code” on page 3-7
• “Preserving Your Code” on page 3-8
• “File Naming Conventions” on page 3-9

3

Recommended Compilation Options for codegen

-c Generate Code Only
Use the -c option to generate code only without invoking the make command. If this option is used,
codegen does not generate compiled object code. This option saves you time during the development
cycle when you want to iterate rapidly between modifying MATLAB code and generating C code and
are mainly interested in inspecting the C code.

For more information and a complete list of compilation options, see codegen.

-report Generate Code Generation Report
Use the -report option to generate a code generation report in HTML format at compile time to
help you debug your MATLAB code and verify that it is suitable for code generation. If the -report
option is not specified, codegen generates a report only if compilation errors or warnings occur.

The code generation report contains the following information:

• Summary of compilation results, including type of target and number of warnings or errors
• Build log that records compilation and linking activities
• Links to generated files
• Error and warning messages

For more information, see codegen.

3 Best Practices for Working with MATLAB Coder

3-2

Testing MEX Functions in MATLAB
To prepare your MATLAB code before you generate C code, use codegen to convert your MATLAB
code to a MEX function. codegen generates a platform-specific MEX-file, which you can execute
within the MATLAB environment to test your algorithm.

For more information, see codegen.

 Testing MEX Functions in MATLAB

3-3

Comparing C Code and MATLAB Code Using Tiling in the
MATLAB Editor

Use the MATLAB Editor's left/right tile feature to compare your generated C code to the original
MATLAB code. You can easily compare the generated C code to your original MATLAB code. In the
generated C code:

• Your function name is unchanged.
• Your comments are preserved in the same position.

To compare two files, follow these steps:

1 Open the C file and the MATLAB file in the Editor. (Dock both windows if they are not docked.)
2

Select Window > Left/Right Tile (or the toolbar button) to view the files side by side.

The MATLAB file kalman02.m and its generated C code kalman02.c are displayed in the following
figure.

3 Best Practices for Working with MATLAB Coder

3-4

Using Build Scripts
If you use codegen to generate code from the command line, use build scripts to call codegen to
generate MEX functions from your MATLAB function.

A build script automates a series of MATLAB commands that you want to perform repeatedly from the
command line, saving you time and eliminating input errors. For instance, you can use a build script
to clear your workspace before each build and to specify code generation options.

Here is an example of a build script to run codegen to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

codegen -report lms_02.m ...
 -args { zeros(N,1) zeros(N,1) }

where:

• close all deletes figures whose handles are not hidden. See close in the MATLAB Graphics
function reference for more information.

• clear all removes variables, functions, and MEX-files from memory, leaving the workspace
empty. It also clears breakpoints.

Note Remove the clear all command from the build scripts if you want to preserve
breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving you a “clean screen.”
• N = 73113 sets the value of the variable N, which represents the number of samples in each of

the two input parameters for the function lms_02
• codegen -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls codegen to

generate C code for file lms_02.m using the following options:

• -report generates a code generation report
• -args { zeros(N,1) zeros(N,1) } specifies the properties of the function inputs as a cell

array of example values. In this case, the input parameters are N-by-1 vectors of real doubles.

 Using Build Scripts

3-5

Check Code Using the MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends modifications. You can use the
code analyzer to check your code interactively in the MATLAB Editor while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated warning and error

messages is selected.

3 Best Practices for Working with MATLAB Coder

3-6

Separating Your Test Bench from Your Function Code
If you use codegen to generate code from the command line, separate your core algorithm from your
test bench. Create a separate test script to do the pre- and post-processing such as loading inputs,
setting up input values, calling the function under test, and outputting test results.

 Separating Your Test Bench from Your Function Code

3-7

Preserving Your Code
Preserve your code before making further modifications. This practice provides a fallback in case of
error and a baseline for testing and validation. Use a consistent file naming convention. For example,
add a 2-digit suffix to the file name for each file in a sequence. See “File Naming Conventions” on
page 3-9 for more details.

3 Best Practices for Working with MATLAB Coder

3-8

File Naming Conventions
Use a consistent file naming convention to identify different types and versions of your MATLAB files.
This approach keeps your files organized and minimizes the risk of overwriting existing files or
creating two files with the same name in different folders.

For example, the file naming convention in the Generating MEX Functions getting started tutorial is:

• The suffix _build identifies a build script.
• The suffix _test identifies a test script.
• A numerical suffix, for example, _01 identifies the version of a file. These numbers are typically

two-digit sequential integers, beginning with 01, 02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.
• The file test_03.m is the third version of the test script for this tutorial.

 File Naming Conventions

3-9

	Product Overview
	MATLAB Coder Product Description
	About MATLAB Coder
	When to Use MATLAB Coder
	What You Can Do with the Project Interface
	When to Use the Command Line (codegen function)

	Code Generation for Embedded Software Applications
	Code Generation for Fixed-Point Algorithms
	Installing Prerequisite Products
	Related Products
	Setting Up the C or C++ Compiler
	Expected Background
	Code Generation Workflow
	See Also

	Input Type Specification for Code Generation
	Differences in Appearance of Generated Code and MATLAB Code
	Mapping MATLAB Functions to C/C++ Functions
	Representation of Function Outputs
	Constant Values Removed in Generated Code
	Accessing Matrix Elements
	Math Operations and Other Function Calls
	Variable-Size Arrays
	Local Variables in Generated Code
	Cell Arrays in Generated Code
	Initialize and Terminate Functions

	Tutorials
	Generate C Code by Using the MATLAB Coder App
	Tutorial Files
	Generate C Code for the MATLAB Function
	Generate C Code for Variable-Size Inputs
	Next Steps

	Generate C Code at the Command Line
	Tutorial Files
	Generate C Code for the MATLAB Function
	Generate C Code for Variable-Size Inputs
	Next Steps

	Accelerate MATLAB Algorithm by Generating MEX Function
	Tutorial Files
	Generate MEX Function for the MATLAB Function
	Generate MEX Function for Variable-Size Inputs
	Next Steps

	Hello World
	Generate Code for an Averaging Filter

	Best Practices for Working with MATLAB Coder
	Recommended Compilation Options for codegen
	-c Generate Code Only
	-report Generate Code Generation Report

	Testing MEX Functions in MATLAB
	Comparing C Code and MATLAB Code Using Tiling in the MATLAB Editor
	Using Build Scripts
	Check Code Using the MATLAB Code Analyzer
	Separating Your Test Bench from Your Function Code
	Preserving Your Code
	File Naming Conventions

